Routes to Nanoparticle-Polymer Superlattices
نویسندگان
چکیده
منابع مشابه
Routes to Nanoparticle-Polymer Superlattices
Nanoparticles can self-assemble into highly ordered twoand three-dimensional superlattices. For many practical applications these assemblies need to be integrated into polymeric matrices to provide stability and function. By appropriate co-assembly of nanoparticles and polymers it has become possible to tailor the nanoparticle superlattice structure via the length and stiffness of the polymer c...
متن کاملMacroscopic and tunable nanoparticle superlattices.
We describe a robust method to assemble nanoparticles into highly ordered superlattices by inducing aqueous phase separation of neutral capping polymers. Here we demonstrate the approach with thiolated polyethylene-glycol-functionalized gold nanoparticles (PEG-AuNPs) in the presence of salts (for example, K2CO3) in solutions that spontaneously migrate to the liquid-vapor interface to form a Gib...
متن کاملDiamond family of nanoparticle superlattices.
Diamond lattices formed by atomic or colloidal elements exhibit remarkable functional properties. However, building such structures via self-assembly has proven to be challenging because of the low packing fraction, sensitivity to bond orientation, and local heterogeneity. We report a strategy for creating a diamond superlattice of nano-objects via self-assembly and demonstrate its experimental...
متن کاملDipole-dipole interactions in nanoparticle superlattices.
Nanoparticles often self-assemble into hexagonal-close-packed (hcp) structures although it is predicted to be less stable than face-centered-cubic (fcc) packing in hard-sphere models. In addition to close-packed fcc and hcp superlattices, we observe formation of nonclose-packed simple-hexagonal (sh) superlattices of nearly spherical PbS, PbSe, and gamma-Fe2O3 nanocrystals. This surprisingly ric...
متن کاملNanoparticle Superlattices: The Roles of Soft Ligands
Nanoparticle superlattices are periodic arrays of nanoscale inorganic building blocks including metal nanoparticles, quantum dots and magnetic nanoparticles. Such assemblies can exhibit exciting new collective properties different from those of individual nanoparticle or corresponding bulk materials. However, fabrication of nanoparticle superlattices is nontrivial because nanoparticles are noto...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Polymers
سال: 2011
ISSN: 2073-4360
DOI: 10.3390/polym3020662